您当前的位置:首页 >> 要闻 >> 详情
全球即时:转动惯量乘以角加速度和角速度 转动惯量乘以角加速度
来源: 城市网      时间:2023-05-22 21:02:47

今天来聊聊关于转动惯量乘以角加速度和角速度,转动惯量乘以角加速度的文章,现在就为大家来简单介绍下转动惯量乘以角加速度和角速度,转动惯量乘以角加速度,希望对各位小伙伴们有所帮助。

1、平动中的牛顿第二定律F = ma,合外力 = 质量× 线加速度。


(相关资料图)

2、转动中,就成了 M = Iβ;合外力矩 = 转动惯量× 角加速度。

3、2、平动中,牛顿第二定律的动量表述是:合外力 = 线动量的变化率;线动量 = 质量× 速度。

4、转动中,牛顿第二定律的角动量表述:合外力矩 = 角动量的变化率;角动量 = 转动惯量× 角速度。

5、3、平动中的动能 Ek =½ mv² = ½ 质量 × 线速率的平方。

6、 转动中的动能 Ek =½ mv² =½ 转动惯量 × 角速率的平方。

7、扩展资料一个质量为m、速度为v、矢径为r的质点对r的原点的动量矩为L=r×mv。

8、动量矩是个矢量,它在某一轴上的投影就是对该轴的动量矩。

9、对轴的动量矩是个标量。

10、质点系或刚体对某点(或某轴)的动量矩等于其中所有质点的动量对该点(或该轴)之矩的矢量和(或代数和)。

11、平动的刚体,由于它的各点的速度都相同(见刚体的平动),所以它对某点的动量矩等于刚体质心以该点为原点的矢径与刚体动量的矢量积。

12、一个作半径r的匀速圆周运动的质点绕圆心O转动的角速度为),则质点对O的动量矩即质点的角动量为,其中I为质点对圆心的转动惯量。

13、绕定轴转动的刚体对定轴的动量矩即刚体的角动量,其中I为刚体对该轴的转动惯量,ω为刚体绕该轴转动的角速度。

14、参考资料来源:百度百科-动力矩。

相信通过转动惯量乘以角加速度这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。

本文由用户上传,如有侵权请联系删除!
标签:

广告

X 关闭

广告

X 关闭